You are given two non-empty linked lists representing two non-negative numbers.
Each of their nodes contains a single decimal digit. The most significant digit comes first.
Return a linked list representing the sum of these two numbers.
{
"number1": [9, 9],
"number2": [1]
}
Output:
[1, 0, 0]
99 + 1 = 100.
No number will start from digit 0
except the number 0
.
Constraints:
/*
Asymptotic complexity in terms of the total length of input linked lists `n`:
* Time: O(n).
* Auxiliary space: O(n).
* Total space: O(n).
*/
int length(LinkedListNode* head) {
int length = 0;
while(head) {
head = head->next;
length++;
}
return length;
}
LinkedListNode* recursive_helper(
LinkedListNode* number1, LinkedListNode* number2, int& carry, int difference) {
if (!number1) {
return nullptr;
}
LinkedListNode* result = new LinkedListNode(0);
// Note that when one list is shorted than another, we effectively use '0' as missing values
// in the shorter list.
// For example, with 1->2->3->4 and 6->7, the second list is "virtually" made 0->0->6->7.
// Instead of actually grow the list, we use argument called `difference` to do that "virtually".
result->next = recursive_helper(
number1->next, (difference > 0 ? number2 : number2->next), carry, difference - 1);
int sum = number1->value + (difference > 0 ? 0 : number2->value) + carry;
carry = sum / 10;
result->value = sum % 10;
return result;
}
LinkedListNode *add_two_numbers(LinkedListNode *number1, LinkedListNode *number2) {
int length1 = length(number1);
int length2 = length(number2);
if(length1 < length2) {
swap(number1, number2);
}
// Shorter list has abs(length2 - length1) fewer nodes than the longer one.
int difference = abs(length2 - length1);
int carry = 0;
LinkedListNode* answer = recursive_helper(number1, number2, carry, difference);
if(carry > 0) {
// Insert a node at the front.
LinkedListNode* temp = new LinkedListNode(carry);
temp->next = answer;
answer = temp;
}
return answer;
}
/*
Asymptotic complexity in terms of the total length of the linked lists `n`:
* Time: O(n).
* Auxiliary space: O(n).
* Total space: O(n).
*/
stack<int> fill_stack_from_list(LinkedListNode *list) {
stack<int> result;
while (list) {
result.push(list->value);
list = list->next;
}
return result;
}
int pop_from_stack_or_zero(stack<int> &s) {
if (s.empty()) {
return 0;
} else {
int result = s.top();
s.pop();
return result;
}
}
LinkedListNode *add_two_numbers(LinkedListNode *number1, LinkedListNode *number2) {
stack<int> stack1 = fill_stack_from_list(number1);
stack<int> stack2 = fill_stack_from_list(number2);
LinkedListNode* result = nullptr;
int carry = 0;
while (!stack1.empty() or !stack2.empty() or carry > 0) {
int sum = pop_from_stack_or_zero(stack1) + pop_from_stack_or_zero(stack2) + carry;
carry = sum / 10;
LinkedListNode* node_to_insert = new LinkedListNode(sum % 10);
node_to_insert->next = result;
result = node_to_insert;
}
return result;
}
/*
Asymptotic complexity in terms of the total length of input linked lists `n`:
* Time: O(n).
* Auxiliary space: O(n).
* Total space: O(n).
*/
LinkedListNode* reverse(LinkedListNode* head) {
LinkedListNode *current_node = head, *previous_node = nullptr, *next_node = nullptr;
while(current_node) {
next_node = current_node->next;
current_node->next = previous_node;
previous_node = current_node;
current_node = next_node;
}
return previous_node;
}
LinkedListNode *add_two_numbers(LinkedListNode *number1, LinkedListNode *number2) {
number1 = reverse(number1);
number2 = reverse(number2);
LinkedListNode *answer = nullptr;
LinkedListNode *temp = nullptr;
int carry = 0;
while(number1 or number2 or carry > 0) {
int sum = 0;
if (number1) {
sum += number1->value;
number1 = number1->next;
}
if (number2) {
sum += number2->value;
number2 = number2->next;
}
sum += carry;
temp = new LinkedListNode(sum % 10);
temp->next = answer;
answer = temp;
carry = sum / 10;
}
return answer;
}
"""
Asymptotic complexity in terms of the total length of input linked lists `n`:
* Time: O(n).
* Auxiliary space: O(n).
* Total space: O(n).
"""
def fill_stack_from_list(list):
result = []
while list:
result.append(list.value)
list = list.next
return result
def pop_from_stack_or_zero(stack):
if not stack:
return 0
else:
return stack.pop()
def add_two_numbers(number1, number2):
stack1 = fill_stack_from_list(number1)
stack2 = fill_stack_from_list(number2)
result = None
carry = 0
while stack1 or stack2 or carry > 0:
sum = pop_from_stack_or_zero(stack1) + pop_from_stack_or_zero(stack2) + carry
carry = sum // 10
node_to_insert = LinkedListNode(sum % 10)
node_to_insert.next = result
result = node_to_insert
return result
"""
Asymptotic complexity in terms of the total length of the linked lists `n`:
* Time: O(n).
* Auxiliary space: O(n).
* Total space: O(n).
"""
def fill_stack_from_list(list):
result = []
while list:
result.append(list.value)
list = list.next
return result
def pop_from_stack_or_zero(stack):
if not stack:
return 0
else:
return stack.pop()
def add_two_numbers(number1, number2):
stack1 = fill_stack_from_list(number1)
stack2 = fill_stack_from_list(number2)
result = None
carry = 0
while stack1 or stack2 or carry > 0:
sum = pop_from_stack_or_zero(stack1) + pop_from_stack_or_zero(stack2) + carry
carry = sum // 10
node_to_insert = LinkedListNode(sum % 10)
node_to_insert.next = result
result = node_to_insert
return result
"""
Asymptotic complexity in terms of the total length of input linked lists `n`:
* Time: O(n).
* Auxiliary space: O(n).
* Total space: O(n).
"""
def reverse(head):
current_node = head
previous_node = None
while current_node:
next_node = current_node.next
current_node.next = previous_node
previous_node = current_node
current_node = next_node
return previous_node
def add_two_numbers(number1, number2):
number1 = reverse(number1)
number2 = reverse(number2)
answer = None
temp = None
carry = 0
while number1 or number2 or carry > 0:
sum = 0
if number1:
sum += number1.value
number1 = number1.next
if number2:
sum += number2.value
number2 = number2.next
sum += carry
node_to_insert = LinkedListNode(sum % 10)
node_to_insert.next = answer
answer = node_to_insert
carry = sum // 10
return answer
We hope that these solutions to the add two numbers represented by list problem have helped you level up your coding skills. You can expect problems like these at top tech companies like Amazon and Google.
If you are preparing for a tech interview at FAANG or any other Tier-1 tech company, register for Interview Kickstart’s FREE webinar to understand the best way to prepare.
Interview Kickstart offers interview preparation courses taught by FAANG+ tech leads and seasoned hiring managers. Our programs include a comprehensive curriculum, unmatched teaching methods, and career coaching to help you nail your next tech interview.
We offer 18 interview preparation courses, each tailored to a specific engineering domain or role, including the most in-demand and highest-paying domains and roles, such as:
â€To learn more, register for the FREE webinar.
The 11 Neural “Power Patterns” For Solving Any FAANG Interview Problem 12.5X Faster Than 99.8% OF Applicants
The 2 “Magic Questions” That Reveal Whether You’re Good Enough To Receive A Lucrative Big Tech Offer
The “Instant Income Multiplier” That 2-3X’s Your Current Tech Salary
The 11 Neural “Power Patterns” For Solving Any FAANG Interview Problem 12.5X Faster Than 99.8% OF Applicants
The 2 “Magic Questions” That Reveal Whether You’re Good Enough To Receive A Lucrative Big Tech Offer
The “Instant Income Multiplier” That 2-3X’s Your Current Tech Salary
Just drop your name and email so we can send your Power Patterns PDF straight to your inbox. No Spam!
By sharing your contact details, you agree to our privacy policy.
Time Zone: Asia/Dhaka
We’ve sent the Power Patterns PDF to your inbox — it should arrive in the next 30 seconds.
📩 Can’t find it? Check your promotions or spam folder — and mark us as safe so you don’t miss future insights.
We’re hosting a private session where FAANG insiders walk through how they actually use these Power Patterns to crack interviews — and what sets top performers apart.
🎯 If you liked the PDF, you’ll love what we’re sharing next.
Time Zone: