Next webinar starts in

00

DAYS

:

00

HR

:

00

MINS

:

00

SEC

Data Science COURSE

Nail Your Next Data Science Interview

4.66
Tpm reviews
Students enrolled: 165

Designed and taught by FAANG+ Data Scientists to help you land your dream job in FAANG+ and Tier-1 companies. In a span of 15 weeks, we will cover everything you need to learn to nail your next Data Science interview.

Register for webinar
Learn more about the course & pricing
It's Free
company-logos

Next webinar starts in

00
DAYS
:
00
HR
:
00
MINS
:
00
SEC
Start Learning
Get all the information about the course and pricing in our live webinar with Q&A.
Best suited for

Why choose this course?

Program designed by FAANG+ leads

Covering data structures, algorithms, interview-relevant topics, and career coaching

Individualized teaching and 1:1 help

Technical coaching, homework assistance, solutions discussion, and individual sessions

Mock interviews with Silicon Valley engineers

Live interview practice in real-life simulated environments with FAANG and top-tier interviewers

Personalized feedback

Constructive, structured, and actionable insights for improved interview performance

Career skills development

Resume building, LinkedIn profile optimization, personal branding, and live behavioral workshops

50% Money-Back Guarantee*

If you do well in our course but still don't land a domain-relevant job within the post-program support period, we'll refund 50% of the tuition you paid for the course.*

Register for webinar
It's Free

Next webinar starts in

00
DAYS
:
00
HR
:
00
MINS
:
00
SEC

Meet your instructors

Our highly experienced instructors are active hiring managers and employees at FAANG+ companies and know exactly what it takes to ace tech and managerial interviews.

A typical week at Interview Kickstart

This is how our structured and organized program assists learners in uplevel their careers while keeping their current jobs. Our learners devote 10 to 12 hours per week to this course.

Thu

Foundation content
Get high-quality videos and course material for next week’s topic
Consists of introduction to fundamentals, interview-relevant topics and case studies
Assignment review session
Solve questions and case studies based on the assignment shared with you

Sun

Online live sessions
Attend 4-hour sessions hosted by Lead Data Scientists and Research Scientists from FAANG+ companies
Discuss open-ended questions and problem-solving strategies
Get pro tips to solve challenging interview problems

Mon-Wed

Practice problems & assignments
Practice the concepts taught in live sessions to solve assignment questions
Live doubt-solving with FAANG+ Data Science instructors
Learn about the hiring process and interview experiences at FAANG+ companies from the instructors

Every day

1:1 access to instructors
Personalized coaching from FAANG+ DS instructors
Individualized and detailed attention to your questions

Data Science Course details and curriculum

Data structures and Algorithms

1

Sorting

  • Introduction to Sorting
  • Basics of Asymptotic Analysis and Worst Case & Average Case Analysis
  • Different Sorting Algorithms and their comparison
  • Algorithm paradigms like Divide & Conquer, Decrease & Conquer, Transform & Conquer
  • Presorting
  • Extensions of Merge Sort, Quick Sort, Heap Sort
  • Common sorting-related coding interview problems

2

Recursion

  • Recursion as a Lazy Manager’s Strategy
  • Recursive Mathematical Functions
  • Combinatorial Enumeration
  • Backtracking
  • Exhaustive Enumeration & General Template
  • Common recursion- and backtracking-related coding interview problems

3

Trees

  • Dictionaries & Sets, Hash Tables 
  • Modeling data as Binary Trees and Binary Search Tree and performing different operations over them
  • Tree Traversals and Constructions 
  • BFS Coding Patterns
  • DFS Coding Patterns
  • Tree Construction from its traversals 
  • Common trees-related coding interview problems

4

Graphs

  • Overview of Graphs
  • Problem definition of the 7 Bridges of Konigsberg and its connection with Graph theory
  • What is a graph, and when do you model a problem as a Graph?
  • How to store a Graph in memory (Adjacency Lists, Adjacency Matrices, Adjacency Maps)
  • Graphs traversal: BFS and DFS, BFS Tree, DFS stack-based implementation
  • A general template to solve any problems modeled as Graphs
  • Graphs in Interviews
  • Common graphs-related coding interview problems

5

Dynamic Programming

  • Dynamic Programming Introduction
  • Modeling problems as recursive mathematical functions
  • Detecting overlapping subproblems
  • Top-down Memorization
  • Bottom-up Tabulation
  • Optimizing Bottom-up Tabulation
  • Common DP-related coding interview problems
Data Science

1

SQL Programming (interview-focused concepts and questions)

  • Derive business insights for a food delivery app by writing SQL queries
  • Comprehensive coverage of topics from intermediate-level concepts such as Case Statements and subqueries to advanced SQL functions such as joins and analytical functions
  • Application of window functions as lead, lag functions to evaluate day-over-day insight on business performance
  • Use rank and dense rank functions to understand merchants’ reach in the market
  • Complex SQL problems on customer-merchant pairwise dependence using a variety of functions and operators
  • Deep dive into joins, their type, and comparison of left join vs. right join vs. outer join vs. broadcast join
  • Thematic coverage of frequently asked interview problems through template problems
  • A step-by-step guide to what you can expect in an interview and how to tackle them in a time-constrained environment

2

Probability

  • Challenging combinatorial probability questions involving coin tosses, dice throws, cards, and balls (popular in FAANG+ interviews)
  • Dealing with bias: Given an outcome, finding the probability of the coin being biased
  • Interview questions on conditional probability and Bayes theorem: Given the statistics, what is the probability of success of an event

3

Distributions

  • Random variables, distributions, PDF, and CDF
  • Intriguing properties of normal distribution and related common interview questions
  • The application of normal distribution in various industries/fields such as finance, trading, etc. 
  • Importance of normalization and standardization during data analysis
  • Central Limit Theorem and its real-life applications
  • Extensive coverage of distributions, including uniform distribution, binomial distribution, Poisson distribution, exponential, etc.
  • Relationships among probability distributions such as approximating binomial distribution to the normal distribution under the certain circumstances
  • Say you have X1 ~ Uniform(0, 1) and X2 ~ Uniform(0, 1). What is the expected value of the minimum of X and X2?
  • Suppose a fair coin is tossed 100 times. What is the probability there will be more than 60 heads?
  • The probability of a car passing a certain intersection in a 20-minute window is 0.9. What is the probability of a car passing the intersection in a 5-minute window?

4

Data Science Design: A/B testing

  • Hypothesis testing, develop null and alternative hypotheses
  • Familiarity with p-value and general misconceptions like p-value is the probability of the null hypothesis being false
  • How to find the confidence interval? What are Type-1 and Type-2 errors?
  • One side vs. Two side testing. When to use when?
  • T-test vs. Z-test: How can we test whether the avg. car speed on the highway exceeds 65mph with a significance level of 0.05?
  • Chi-square test and ANOVA (ANalysis Of VAriance)
  • Learn how FAANG+ companies do A/B testing for their business
  • Tough interview questions such as determining whether a new video recommendation algorithm has been better than the current one
  • Performance metrics: Answer business questions, such as opportunity estimation and gap analysis
  • Application of AUC-ROC, Accuracy, Precision, Recall, F-score, etc.
  • Interview-relevant strategies: What questions to ask an interviewer? How to structure your solution?

5

Regression, MLE, EM, and MAP

  • Regression: Investigate the relationship between two variables
  • Assumption of Linear Regression and common interview questions such as what if one of the assumptions doesn’t work?
  • Least Square Estimator vs. Maximum Likelihood estimator: Under what conditions they are the same?
  • Ridge Regression vs. Lasso Regression: Which regression can make a certain coefficient to exactly zero and how?
  • Likelihood function: Measure how well observed data fits the assumed distribution
  • Maximum Likelihood Estimation: A car speed on the highway follows a normal distribution: N(μ,25), After observing the n car speed, what is the MLE for μ?
  • Expectation-Maximization: Understand it through the example of Gaussian Mixture Models
  • Maximum a posteriori (MAP) and how it’s different from Maximum Likelihood Estimation

6

Supervised Machine Learning

  • Defining the steps for data preprocessing with the help of intuitive examples
  • Best practices of data type identification, data quality correction, feature engineering, dimensionality reduction
  • Model training and the importance of training, validation, and test datasets 
  • Interview-focused concepts like objective functions and evaluation metrics are revisited to help understand the topic as a whole
  • Optimization techniques like Gradient Descent, SGD, and Adam Optimizer with challenging questions
  • Describing interview-focused Supervised Machine Learning Algorithms like Logistic Regression, Naive Bayes, kNN, and SVM
  • Learn to break down problems with logistic regression and understand issues with logistic regression
  • Limitations of  Naive Bayes explaining why it is naive
  • Visualizing the KNN algorithm in the context of classification and regression 
  • Graphically distinguishing between various cases for classification using the Support Vector Machine algorithm
  • SVM kernel tricks and related interview questions 
  • Interview questions on kernel: Can it be used with KNN?
  • The intuition behind the decision tree: how to arrive at a decision by asking a series of binary questions
  • Building a decision tree from scratch
  • Overfitting and underfitting in the context of machine learning algorithms
  • Bagging vs. Boosting
  • Interview Questions: Why random forest? Why is it random? Common problems with decision trees and random forest

7

Unsupervised Machine Learning

  • Defining recommendation systems through examples from video streaming and online shopping
  • Illustration of different approaches to build recommendation systems like collaborative filtering, content-based filtering, and hybrid approaches
  • Drawbacks of item-based recommenders and why to use matrix factorization
  • Singular Value Decomposition and other alternatives for SVD
  • Classify the measure of similarity of data points by using Euclidean, Manhattan, and Cosine Similarity
  • Explain clustering by describing Gene Expression and Image Segmentation 
  • Graphically depicting the K-Means Algorithm and how to choose the value of K
  • Understand DBSCAN Graphically depicting the K-Means Algorithm and how to choose the value of K
  • AN Algorithm and its parameters in detail and when it is preferred
  • Interview questions based on the preference of K-Means and DBSCAN Algorithm
  • Explore PCA and how to use it for Dimensionality Reduction
  • Learn to compute principal components iteratively and by using eigenvalues and eigenvectors

8

Deep Learning

  • Define Common Activation Function and the advantages of using CAF
  • Neural network covering interview questions such as the strategy of trying learning rate, linear or logarithmic scale
  • How do forward propagation and backward propagation work?
  • Dense Neural Network (DNN) on image processes and advantage of using CNN over DNN
  • Defining CNN Architecture: Kernels, Pattern Finding, and Feature Map
  • Common interview questions on CNN
  • Implementation of CNN using Tensorflow
  • Learn Dropout: Is dropout used in the test dataset?
  • Why RNN over N-gram models?
  • RNN Architecture, backward propagation over time, covering interview questions such as: what is exploding vs. vanishing gradient? Does RNN suffer both?
  • Bidirectional RNN (BiRNN) and Stacked RNN
  • Advantages of using BiRNN
  • How to go from Naive RNN to Long short-term memory (LSTM)
  • LSTM architecture: Forget Gate, Input Gate, Intermediate Cells, and Update Cell
  • Interview-relevant strategies: What is the interviewer expecting when they ask about LSTM basics?

9

Time Series Analysis

  • Understand trends, seasonality, cyclic, and irregularity in time series data
  • Importance of stationarity, Augmented Dicky Fuller (ADF) test, Interview Questions: What is the null hypothesis in the ADF test?
  • Interview questions on AR, MA, and ARIMA such as the difference between ACF and PACF, how to find p,d,q in ARIMA
  • Extension of ARIMA: SARIMA, SARIMAX, and their advantage
  • How does Facebook Prophet work? Demonstrate Facebook Prophet
  • Neural Prophet vs FB prophet.
Career Skills

1

Interview Strategy and Success

2

Behavioral Interview Prep

3

Offers and Negotiation

Support Period

1

15 mock interviews

2

Take classes you missed/retake classes/tests

3

1:1 technical/career coaching

4

Interview strategy and salary negotiation support

Register for webinar
It's Free

Next webinar starts in

00
DAYS
:
00
HR
:
00
MINS
:
00
SEC

Practice and track progress on UpLevel

UpLevel will be your all-in-one learning platform to get you FAANG-ready, with 10,000+ interview questions, timed tests, videos, mock interviews suite, and more.
Mock interviews suite
On-demand timed tests
In-browser online judge
10,000 interview questions
100,000 hours of video explanations
Class schedules & activity alerts
Real-time progress update
11 programming languages

Get upto 15 mock interviews with

hiring managers

What makes our mock Interviews the best:

Hiring managers from Tier-1 companies like Google & Apple

Interview with the best. No one will prepare you better!

Domain-specific interviews

Practice for your target domain - Machine Learning

Detailed personalized feedback

Identify and work on your improvement areas

Transparent, non-anonymous interviews

Get the most realistic experience possible

1. Flexible schedule

Pick timings convenient to you

4. Technical and behavioral interviews

Uplevel your technical and behavioral interview skills

2. Remote interview experience

Mirrors the current format of remote interviews

5. Level-specific interviews

Because an L4 at Google can be quite different from an E7 at Meta

3. Feedback documentation

All the feedback you’ve ever wanted, recorded and documented

6. Interviewer of your choice

Choose based on domain

Career impact

Our engineers land high-paying and rewarding offers from the biggest tech companies, including Meta, Google, Microsoft, Apple, Amazon, Tesla, and Netflix.

How to enroll for the Data Science Interview Course?

Learn more about Interview Kickstart and the Data Science course by joining the free webinar hosted by Ryan Valles, co-founder of Interview Kickstart.
Register for webinar
It's Free

Next webinar starts in

00
DAYS
:
00
HR
:
00
MINS
:
00
SEC
enroll course

A Free Guide to Kickstart Your Back-End Engineering Career at FAANG+

From the interview process and career path to interview questions and salary details — learn everything you need to know about Back-End Engineering careers at top tech companies.

Interview Strategy and Success

Interview Questions

Career Path

Salary and Levels at FAANG

Frequently Asked Questions

Data Science Interview Process Outline

The typical Data Science interview process at FAANG+ and other Tier-1 companies looks like:
One coding round: Easy to medium Leetcode problems or Python-based Data Manipulation and Wrangling questions. SQL is often a part of these rounds.
Behavioral round: Open-ended questions to gauge if you’re a “good fit” for the company.
  • One problem-solving/discussion round
  • One take-home assignment round
  • 1-2 domain rounds
Behavioral round: Open-ended questions to gauge if you’re a “good fit” for the company.

What to Expect at Data Scientist Interviews

1

One coding round
  • Easy to medium Leet code problems or Python-based Data Manipulation and Wrangling questions. SQL is often a part of these rounds.
  • The SQL round is pretty standard across all the FAANG+ companies. You’ll be asked to solve problems using common clauses such as JOINS, WHERE, and GROUP BY. 
  • Google tends to focus more on Statistical coding, some Data Analysis, and SQL since the company handles vast data sets.

2

One problem-solving/discussion round
  • Inclined towards discussing your work experience, past projects, and problem-solving with a mix of statistics, coding, probability, and some quantitative aptitude questions. 
  • Facebook (Meta) focuses more on real-world data problems. So, prepare accordingly and provide concise answers when asked to elaborate on statistical terms.

3

One take-home assignment round
  • Some companies give a dataset and inference-based questions to judge problem-approach/deduction skills as part of take-home assignments. The usual deadline is 24-48 hours.
  • For the take-home assignment given by Apple, you’ll only be provided with three days. It will probably be a Machine Learning problem, and you’ll have to develop a model and give a prediction using the dataset.

4

1-2 domain rounds
  • This round demands a deep dive into Data Science fundamentals. Interview questions in these rounds typically focus on designing experiments to meet certain business goals, A/B testing, and ML algorithms. 
  • You’ll need to be clear about how you frame the problem, the metrics you use, A/B testing, technical trade-offs, and so on, along with the required data analysis.

5

One behavioral round
  • You can expect Data Science interview questions on your job experience and discussions on past projects along with open-ended questions to gauge if you’re a “good fit.”
  • When applying at Google, ensure that you have an answer for “Why Google?”. Such questions are asked at all FAANG+ companies.
  • Thoroughly research each company’s leadership principles and develop answers in the form of a story based on those characteristics.

Data Science Interview Questions

Data Science interview questions can be based on a variety of topics. You can answer them if you identify common fundamentals.
Try answering these Data Science interview questions:

1

Write a code that takes a number from the user and outputs all Fibonacci numbers less than the user input.
Write a code that takes a number from the user and outputs all Fibonacci numbers less than the user input.
Given: The CDF of a distribution. Find: The mean.
Given: Two numbers a, b ;a<b. Find: Output of f(a,b) = g(a) + g(a+1) +g(a+2) +…+ g(b-2) + g(b-1) + g(b), where g(x) is defined as all Fibonacci numbers less than x.
Given: A number X. Find: The smallest sum of two factors (a, b) of X.
Given: Person A decides to go on a skydiving trip. Based on his research, the probability of a glitch resulting in death is 0.001. Find: The probability of death if A goes on 500 skydives.

2

Domain-specific Data Science Interview Questions
Define the ROC curve.
What is meant by the true positive rate and false-positive rate?
What are the steps involved in making a decision tree?
Given a data set consisting of variables with more than 30 percent missing values, how will you deal with them?
Define dimensionality reduction and list its advantages.
Explain how you would calculate eigenvalues and eigenvectors of the following 3×3 matrix.
How to deal with unbalanced binary classification?
Differentiate between normalization and standardization.
Python or R – Which one would you prefer for text analytics?
Why does data cleaning play a vital role in the analysis?

3

Data Science Interview Questions on Behavioral Skills
Walk us through a project you’re very proud of.
Have you ever used data science to inform a business decision?
How well do you communicate technical concepts to non-technical team members?
How have you used data to elevate the experience of a customer or stakeholder?
Describe when you had to clean and organize a big data set.
If you want to go over some more Data Science interview questions, read:

Data Science Career

The Data Scientist career paths have been booming, and this trend is expected to continue in the upcoming years. Our Data Science Interview Course can help you gain the required skills to land the best job offers in top tech companies.

1

Data Science Career Roadmap
A Data Scientist’s career path features two main career tracks:
  • Individual Contributor roles
  • Management roles
Data Scientist Career Path — Individual Contributor (IC) Roles
Individual contributors in the Data Scientist’s career path work on core data science tasks such as programming, creating models, coding, solving complex problems, and getting hands-on with the technical aspects of data science jobs.
Advanced or deep technical or hard skills are key to developing an IC Data Scientist career path.
Typically, the Data Scientist career path for an individual contributor (IC) follows this progression:
Data Scientist 1 → Data Scientist 2 → Senior Data Scientist → Staff Data Scientist → Sr. Staff Data Scientist → Principal Data Scientist

2

Data Scientist Career Path — Management Roles
A managerial role in a Data Scientist’s career path involves management tasks such as leadership, building relationships, conflict resolution, etc.
For software engineering managerial roles, a conceptual understanding of the technologies used is sufficient to perform managerial tasks. In contrast, Data Science Managers must have a working knowledge of the technologies used.
Communication, leadership, collaboration, and other soft skills are essential for developing a Data Scientist career path in a management role.
Typically, the Data Scientist career path in management follows this progression:
Data Scientist 1 → Data Scientist 2 → Senior Data Scientist → Data Science Manager → Sr. Data Science Manager
To understand the career trajectory of a Data Scientist better, read:

3

Qualifications Required to Become a Data Scientist
Depending on where you are in your Data Scientist career path, you will need the following educational degrees:
  • Bachelor’s/Master’s degree in Computer Science, Software Engineering, or a related field; Bachelor’s degree for an entry-level position and a Master’s degree for higher-level Data Scientist positions
  • Ph.D. in a relevant field is preferable and often a prerequisite for advanced or research and development positions.
You can also obtain professional certifications in the skills needed to pursue a career in Data Science. Some of the top Data Science certifications customized for Software Engineers and Software Developers to follow a Data Scientist career path are:
Tensorflow Developer Certification
Google Professional Data Engineer Certification
Amazon AWS Big Data Certification
Microsoft Certified Azure AI Fundamentals
SAS Certified AI & Machine Learning Professional

4

Data Scientist’s Job Responsibilities
Based on the experience and job profile, the different job responsibilities of Data Scientists have been put together in the table given below:
Data Scientist’s Job Responsibilities by Role
Role
Experience Required
Job Responsibilities
Junior-level Data Scientist
Internship/independent projects
Develop experience working on existing code, programs, models to enhance efficiency, effectiveness, quality, and outcomes,
Mid-level Data Scientist
2+ years
Create and implement basic models and make presentations for feedback; develop technical expertise, and learn all about operations and various facets of data science projects.
Senior Data Scientist
5+ years
Strong technical competence in data science projects; lead projects; good business sense, communication, interpersonal skills; create operational impact; perform at scale, deepen technical expertise, widen interpersonal skill set.
Senior Principal/Staff Scientist
8 - 10 years
Advanced conceptual and practical technical expertise; provide technical direction and at scale; create business organizational impact; deep business acumen; identify business opportunities and enable teams to solve complex problems.
Data Manager
5+ years
Manage small teams; strong project management skills; strong interpersonal and people management skills; management experience.
Senior Data Manager
8 - 10 years
Manage large teams; excellent interpersonal and peoplemanagement skills; lead large projects; strong technical skills; deepbusiness acumen; create business impact; manage resources anddevelop talent.

5

Top Skills Needed to Become a Data Scientist
Data Mining and Data Wrangling
Machine Learning and Artificial Intelligence
Python, R Java, C++, Scala
SQL, Pig, Hive
Programming and Predictive Modeling
Math and Statistics — Linear Algebra, Bayes Theorem, Geometry, Multivariable Calculus, Probability, Discrete Math, and Graph Theory
Tableau, Excel, Microsoft Power BI, Qlikview, and other Business Intelligence and Data Visualization tools
Hadoop, Apache Spark, Apache Kafka, TensorFlow, Pandas, Matplolib, Scikit-Learn, Spark MLib, Numpy, AWS Deep Learning AMI, and other data frameworks

Wondering how to list these skills on your resume? Read How to Create an Impressive Data Scientist Resume.

Data Scientist Salary and Levels at FAANG+ Companies

The average Data Scientist’s salary range is between $105,750 and $180,250 per year. However, total compensation varies considerably depending on the company, location, employee value, years of experience, and core skills.
We’ve listed the Data Scientist salary ranges for various FAANG+ companies below to give you a better idea of how they differ by level:
Facebook Data Scientist Salary
The different levels of Data Scientists at Facebook are:
IC3 (Associate Data Scientist): This is typically the level at which fresher Data Science Engineers or Software Engineers are hired.
IC4: Those hired at this level should have 3-5 years of industry experience. However, new grads can also be hired at this level, provided they can demonstrate skill and expertise. 
IC5: Data Scientists hired at IC5 have at least 6-9 years of industry experience as they are required to lead complex projects on their own. Also considered the “terminal” level before a Data Scientist moves into the management domain as IC5 onwards, they perform more managerial responsibilities.
IC6: Most Data Scientists working at this level have almost 9+ years of experience.
IC7 and IC8: These levels require more than 10 years of experience.
Data Scientist salary at Facebook
Average compensation by level
Level name
Total
Base
Stock (/yr)
Bonus
IC3
$168K
$127K
$29K
$14K
IC4
$222K
$155K
$48K
$19K
IC5
$302K
$184K
$90K
$29K
IC6
$404K
$218K
$142K
$44K
Amazon Data Scientist Salary
Amazon has its own Data Scientist job levels. They are:
L4: Entry-level Data Scientists with less than four years of experience pursuing advanced degrees. They need to be skilled in at least one scripting language and familiar with SQL.
L5: Mid-level Data Scientists have four to seven years of experience and may also have the title of Data Scientist II. At this level, Data Scientists usually have a Master’s degree with a good knowledge of coding.
L6: This level is for Data Scientists who have advanced degrees like Ph. Ds in Machine Learning, Natural Language Processing, etc., based on their area of specialization. The level includes several managerial positions as well. 
L7: This level is for Principal Data Scientists with 10+ years of experience. These employees have several management responsibilities and essentially run the teams.
Data Scientist at Amazon
Average compensation by level
Level name
Total
Base
Stock (/yr)
Bonus
L4
$175K
$132K
$26K
$21K
L5
$227K
$150K
$57K
$27K
L6
$336K$315K
$160K
$140K
$19K
L7
$638K
$185K
$419K
$42K
Apple Data Scientist Salary
On average, the Apple Data Scientist’s salary is $170,871 per year in the US. It can range from $94k to $257k, depending upon your experience, location, skill sets, and many other factors.
Data Scientist at Apple
Average compensation by level
Level name
Total
Base
Stock (/yr)
Bonus
ICT3
$207K
$149K
$41K
$17K
ICT4
$289K
$175K
$96K
$20K
ICT5
$395K
$220K
$145K
$33K
Netflix Data Scientist Salary
Unlike other companies such as Amazon and Apple, Netflix doesn’t have job levels. The company is known for hiring only senior professionals, like, Senior Data Scientists. However, even in this position, salary tends to differ.
Based on your experience and accomplishments, the Netflix Data Scientist salary ranges from $200,000 to $400,000. On average, a Senior Data Scientist at the company earns around $322,272 per year.
However, Netflix does offer a few opportunities for entry-level positions where the Data Scientist can earn around $127,000.
Data Scientist at Netflix
Average compensation by level
Level name
Total
Base
Stock (/yr)
Bonus
Sr. SW. Engineer
$305K
$275K
$14K
$13K
Google Data Scientist Salary
With a user base spanning hundreds of millions, you can imagine how valuable Data Scientists must be to Google. The company employs almost 140,000 people globally, divided into teams; almost each of these teams has a Data Scientist.
There are nine different job levels at Google:
L3 (Data Scientist II): An entry-level position with 0-1 year of experience
L4 (Data Scientist III): Requires 2-5 years of experience
L5 (Senior Data Scientist): Requires over five years of experience
L6 (Staff Data Scientist): Requires 5-8 years of experience
L7 (Senior Staff Data Scientist): Requires over eight years of experience
L8-L11: Executive roles; only employees with considerable experience within Google are eligible for these positions
Data Scientist at Google
Average compensation by level
Level name
Total
Base
Stock (/yr)
Bonus
L3
$158K
$119K
$32K
$14K
L4
$233K
$150K
$58K
$26K
L5
$307K
$181K
$96K
$32K
L6
$548K
$228K
$257K
$51K

FAQs on Data Science Interview Course

A Data Scientist is a technically skilled, result-oriented individual who is data-driven and adept at developing complex quantitative algorithms to sort and synthesize large amounts of data and drive strategy in their organization.
This course is not just for Data Scientists working in companies other than FAANG. If you have worked as an Analyst, Applied Scientist, Research Scientist, or Statistician in your previous organizations and have some exposure to Machine Learning and Statistics; then this course is for you.
Based on our research and conversations with the instructors/hiring managers at FAANG+ companies, the system design round is not part of the interview process for data science roles such as business data scientist or product data scientist. In certain roles like applied scientist and research scientist you might require to have understanding of the system design. If you plan to target a role like a machine learning engineer, in that case, system design is an integral part of the interview process, and for that, you can look out for our machine learning program.
  • Programming in at least one language – Python, R or MATLAB
  • Strong Statistical knowledge like understanding of causal impact and inference, A/B testing, hypothesis testing, etc.
  • A good understanding of machine learning algorithms
  • Ability to collaborate with various teams on a wide variety of problems
  • Experience working with databases
To become a Data Scientist, you should have a Bachelor’s or Master’s degree in Computer Science, Software Engineering, Mathematics or a related field. Bachelor’s degree for an entry-level position and a Master’s degree for higher-level Data Scientist positions is required.
If you are familiar with basic statistics and have some experience working with Machine Learning models, you can take this course to prepare for positions such as Product Analyst, Data Scientist, etc.

Register for our webinar

How to Nail your next Technical Interview

Loading_icon
Loading...
1 Enter details
2 Select slot
By sharing your contact details, you agree to our privacy policy.

Select a Date

Time slots

Time Zone: